The Python programming language is embedded inside FLAC3D 6 and extended to allow FLAC3D models to be manipulated from Python programs. This webinar recording provides a brief introduction to Python scripting and includes many examples of using Python with FLAC3D.
This example describes how to import and use structural data generated by Rockmass Technologies mapping instrumentation.
This FLAC 8.1 tutorial demonstrates how to update the soil densities and the effective stresses in the embankment.
The realism of Discrete Fracture Network (DFN) models relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. In this study, we introduce correlations between fractures by enhancing the genetic model (UFM) of Davy et al. [1] based on simplified concepts of nucleation, growth and arrest with hierarchical rules.
This paper presents analytical solutions to estimate at any scale the fracture density variability associated to stochastic Discrete Fracture Networks. These analytical solutions are based upon the assumption that each fracture in the network is an independent event. Analytical solutions are developed for any kind of fracture density indicators.
Caving, ground surface deformations and the influence of structures when mining by sublevel caving (paper in Swedish)