FLAC3D 7.0 Unstructured Mesh Tutorial

A tutorial showing how to create an unstructured mesh in FLAC3D 7.0 using the extruder pane.

Generating Videos via Plots

This tutorial illustrates how to generate movies from FLAC3D plots. It is also applicable for 3DEC, PFC, and UDEC.

FLAC3D 7.0 Plot Range Tutorial

This tutorial will show how to create and manipulate plot range elements in FLAC3D. Each plot-item in a plot may have one or more range elements that shows the portion which lies within the defined range, while removing from view the portion of the plot-item that lies outside it. Plot-item ranges may also be copied and applied to other plot-items.

Elastic Properties of Fractured Rock Masses With Frictional Properties and Power Law Fracture Size Distributions

We derive the relationships that link the general elastic properties of rock masses to the geometrical properties of fracture networks, with a special emphasis to the case of frictional crack surfaces.

We extend the well-known elastic solutions for free-slipping cracks to fractures whose plane resistance is defined by an elastic fracture (shear) stiffness ks and a stick-slip Coulomb threshold.

Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models

A major use of DFN models for industrial applications is to evaluate permeability and flow structure in hardrock aquifers from geological observations of fracture networks. The relationship between the statistical fracture density distributions and permeability has been extensively studied, but there has been little interest in the spatial structure of DFN models, which is generally assumed to be spatially random (i.e., Poisson). In this paper, we compare the predictions of Poisson DFNs to new DFN models where fractures result from a growth process defined by simplified kinematic rules for nucleation, growth, and fracture arrest.

On the Density Variability of Poissonian Discrete Fracture Networks, with application to power-law fracture size distributions

This paper presents analytical solutions to estimate at any scale the fracture density variability associated to stochastic Discrete Fracture Networks. These analytical solutions are based upon the assumption that each fracture in the network is an independent event. Analytical solutions are developed for any kind of fracture density indicators.

  • Itasca has announced the release of FLAC2D v9 Itasca has announced the release of FLAC2D v9, revolutionizing the way we analyze and predict...
  • 6th Itasca Symposium on Applied Numerical Modeling The next Itasca Symposium will take place June 3 - 6, 2024, in Toronto, Canada....